2024-Hgame-week3-wp-crypto

2024-Hgame-week3-wp-crypto

没事干,所以再更一篇吧

非常坏格密码,使我sagemath旋转

exRSA

扩展维纳攻击,其实之前做到维纳攻击的时候有了解过但不深,今天也算是正式了解了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from Crypto.Util.number import *
from secret import flag
m=bytes_to_long(flag)
p=getStrongPrime(1024)
q=getStrongPrime(1024)
phi=(p-1)*(q-1)
e1=inverse(getPrime(768),phi)
e2=inverse(getPrime(768),phi)
e3=inverse(getPrime(768),phi)
n=p*q
c=pow(m,0x10001,n)
print(f'e1={e1}')
print(f'e2={e2}')
print(f'e3={e3}')
print(f'c={c}')
print(f'n={n}')

"""
e1=5077048237811969427473111225370876122528967447056551899123613461792688002896788394304192917610564149766252232281576990293485239684145310876930997918960070816968829150376875953405420809586267153171717496198336861089523701832098322284501931142889817575816761705044951705530849327928849848158643030693363143757063220584714925893965587967042137557807261154117916358519477964645293471975063362050690306353627492980861008439765365837622657977958069853288056307253167509883258122949882277021665317807253308906355670472172346171177267688064959397186926103987259551586627965406979118193485527520976748490728460167949055289539
e2=12526848298349005390520276923929132463459152574998625757208259297891115133654117648215782945332529081365273860316201130793306570777735076534772168999705895641207535303839455074003057687810381110978320988976011326106919940799160974228311824760046370273505511065619268557697182586259234379239410482784449815732335294395676302226416863709340032987612715151916084291821095462625821023133560415325824885347221391496937213246361736361270846741128557595603052713612528453709948403100711277679641218520429878897565655482086410576379971404789212297697553748292438183065500993375040031733825496692797699362421010271599510269401
e3=12985940757578530810519370332063658344046688856605967474941014436872720360444040464644790980976991393970947023398357422203873284294843401144065013911463670501559888601145108651961098348250824166697665528417668374408814572959722789020110396245076275553505878565603509466220710219260037783849276475397283421068716088638186994778153542817681963059581651103563578804145156157584336712678882995685632615686853980176047683326974283896343322981521150211317597571554542488921290158122634140571148036732893808064119048328855134054709120877895941670166421664806186710346824494054783025733475898081247824887967550418509038276279
c=1414176060152301842110497098024597189246259172019335414900127452098233943041825926028517437075316294943355323947458928010556912909139739282924255506647305696872907898950473108556417350199783145349691087255926287363286922011841143339530863300198239231490707393383076174791818994158815857391930802936280447588808440607415377391336604533440099793849237857247557582307391329320515996021820000355560514217505643587026994918588311127143566858036653315985177551963836429728515745646807123637193259859856630452155138986610272067480257330592146135108190083578873094133114440050860844192259441093236787002715737932342847147399
n=17853303733838066173110417890593704464146824886316456780873352559969742615755294466664439529352718434399552818635352768033531948009737170697566286848710832800426311328560924133698481653594007727877031506265706341560810588064209681809146597572126173303463125668183837840427667101827234752823747483792944536893070188010357644478512143332014786539698535220139784440314481371464053954769822738407808161946943216714729685820896972467020893493349051243983390018762076812868678098172416465691550285372846402991995794349015838868221686216396597327273110165922789814315858462049706255254066724012925815100434953821856854529753
"""

扩展维纳攻击 - CTF Wiki (ctf-wiki.org)

ctfwiki写的实在很详尽,在此仅贴出构造矩阵和代码。
$$
L_3=\begin{pmatrix}1&-N&0&N^2&0&0&0&-N^3\\
0&e_1&-e_1&-Ne_1&-e_1&0&Ne_1&N^2e_1\\
0&0&e_2&-Ne_2&0&Ne_2&0&N^2e_2\\
0&0&0&e_1e_2&0&-e_1e_2&-e_1e_2&-Ne_1e_2\\
0&0&0&0&e_3&-Ne_3&-Ne_3&N^2e_3\\
0&0&0&0&0&e_1e_3&0&-Ne_1e_3\\
0&0&0&0&0&0&e_2e_3&-Ne_2e_3\\
0&0&0&0&0&0&0&e_1e_2e_3\\
\end{pmatrix}
$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from Crypto.Util.number import *
from gmpy2 import *
from sage.all import *
e1=5077048237811969427473111225370876122528967447056551899123613461792688002896788394304192917610564149766252232281576990293485239684145310876930997918960070816968829150376875953405420809586267153171717496198336861089523701832098322284501931142889817575816761705044951705530849327928849848158643030693363143757063220584714925893965587967042137557807261154117916358519477964645293471975063362050690306353627492980861008439765365837622657977958069853288056307253167509883258122949882277021665317807253308906355670472172346171177267688064959397186926103987259551586627965406979118193485527520976748490728460167949055289539
e2=12526848298349005390520276923929132463459152574998625757208259297891115133654117648215782945332529081365273860316201130793306570777735076534772168999705895641207535303839455074003057687810381110978320988976011326106919940799160974228311824760046370273505511065619268557697182586259234379239410482784449815732335294395676302226416863709340032987612715151916084291821095462625821023133560415325824885347221391496937213246361736361270846741128557595603052713612528453709948403100711277679641218520429878897565655482086410576379971404789212297697553748292438183065500993375040031733825496692797699362421010271599510269401
e3=12985940757578530810519370332063658344046688856605967474941014436872720360444040464644790980976991393970947023398357422203873284294843401144065013911463670501559888601145108651961098348250824166697665528417668374408814572959722789020110396245076275553505878565603509466220710219260037783849276475397283421068716088638186994778153542817681963059581651103563578804145156157584336712678882995685632615686853980176047683326974283896343322981521150211317597571554542488921290158122634140571148036732893808064119048328855134054709120877895941670166421664806186710346824494054783025733475898081247824887967550418509038276279
c=1414176060152301842110497098024597189246259172019335414900127452098233943041825926028517437075316294943355323947458928010556912909139739282924255506647305696872907898950473108556417350199783145349691087255926287363286922011841143339530863300198239231490707393383076174791818994158815857391930802936280447588808440607415377391336604533440099793849237857247557582307391329320515996021820000355560514217505643587026994918588311127143566858036653315985177551963836429728515745646807123637193259859856630452155138986610272067480257330592146135108190083578873094133114440050860844192259441093236787002715737932342847147399
N=17853303733838066173110417890593704464146824886316456780873352559969742615755294466664439529352718434399552818635352768033531948009737170697566286848710832800426311328560924133698481653594007727877031506265706341560810588064209681809146597572126173303463125668183837840427667101827234752823747483792944536893070188010357644478512143332014786539698535220139784440314481371464053954769822738407808161946943216714729685820896972467020893493349051243983390018762076812868678098172416465691550285372846402991995794349015838868221686216396597327273110165922789814315858462049706255254066724012925815100434953821856854529753

a = 0.374#731./2049
M1=N**0.5
M2= N **(a+1)
D = diagonal_matrix(ZZ,[N**(1.5),N,N**(a+1.5),N**(0.5),N**(a+1.5),N **(a+1),N **(a+1),1])
M=matrix(ZZ,[[1,-N, 0 ,N**2 , 0 ,0, 0 , -N**3],
[0,e1,-e1,-e1*N,-e1,0,N*e1,N**2*e1],
[0,0,e2,-e2*N,0,e2*N,0,N**2*e2],
[0,0,0,e1*e2,0,-e1*e2,-e1*e2,-N*e1*e2],
[0,0,0,0,e3,-N*e3,-N*e3,N**2*e3],
[0,0,0,0,0,e1*e3,0,-N*e1*e3],
[0,0,0,0,0,0,e2*e3,-N*e2*e3],
[0,0,0,0,0,0,0,e1*e2*e3],])*D
L=M.LLL()
t=vector(ZZ,L[0])
x=t*M**(-1)
phi = int(x[1]/x[0]*e1)
d = inverse(65537,phi)
print(long_to_bytes(int(pow(c,d,N))))

据说某些情况LLL跑不出来?并没有深究

HNP

题如其名。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from Crypto.Util.number import *
from secret import flag

def encrypt(m,p,t):
return [(ti*m)%p for ti in t]

m=bytes_to_long(flag[:63])
length=m.bit_length()+8
p=getStrongPrime(length)
n=32
t=[getRandomRange(0,p) for _ in range(n)]
enc=encrypt(m,p,t)
res=[i%(2**n+1) for i in enc]

print(f'p={p}')
print(f't={t}')
print(f'res={res}')

"""
p=11306299241774950053269547103284637414407835125777245204069367567691021928864773207548731051592853515206232365901169778048084146520829032339328263913558053
t=[3322008555255129336821309701482996933045379792432532251579564581211072677403244970423357912298444457457306659801200188166569132560659008356952740599371688, 8276764260264858811845211578415023343942634613522088631021199433066924291049858607045960690574035761370394263154981351728494309737901121703288822616367266, 9872291736922974456420418463601129094227231979218385985149661132792467621940722580745327835405374826293791332815176458750548942757024017382881517284991646, 4021521745142535813153669961146457406640791935844796005344073886289668464885011415887755787903927824762833158130615018326666118383128627535623639046817799, 24569151076141700493541155834378165089870615699969211988778938492838766214386066952596557490584021813819164202001474086538804476667616708172536787956586, 3218501156520848572861458831123822689702035242514803505049101779996231750875036344564322600086861361414609201214822262908428091097382781770850929067404210, 3563405987398375076327633444036492163004958714828685846202818610320439306396912425420391070117069875583786819323173342951172594046652017297552813501557159, 4914709045693863038598225124534515048993310770286105070725513667435983789847547225180024824321458761262390817487861675595466513538901373422149236133926354, 10800566112999947911006702454427389510409658644419749067440812458744391509925306994806187389406032718319773665587324010542068486131582672363925769248595266, 623364920052209790798128731089194813138909691039137935275037339503622126325928773037501254722851684318024014108149525215083265733712809162344553998427324, 4918421097628430613801265525870561041230011029818851291086862970508621529074497601678774921285912745589840510459677522074887576152015356984592589649844431, 7445733357215847370070696136653689748718028080364812263947785747353258936968978183471549706166364243148972154215055224857918834937707555053246184822095602, 9333534755049225627530284249388438694002602645047933865453159836796667198966058177988500184073454386184080934727537200575457598976121667373801441395932440, 5010854803179970445838791575321127911278311635230076639023411571148488903400610121248617307773872612743228998892986200202713496570375447255258630932158822, 6000645068462569819648461070140557521144801013490106632356836325002546400871463957228581143954591005398533252218429970486115490535584071786260818773166324, 8007260909124669381862034901556111245780505987082990804380814797200322228942432673939944693062470178256867366602331612363176408356304641672459456517978560, 10179739175373883376929532026389135792129233730601278687507041429438945598523995700184622359660605910932803141785598758326254886448481046307666042835829725, 8390072767717395701926289779433055672863880336031837009119103448675232362942223633129328309118158273835961567436591234922783953373319767835877266849545292, 7875011911562967874676113680693929230283866841475641162854665293111344467709424408623198370942797099964625447512797138192853009126888853283526034411007513, 5293772811020012501020124775214770193234655210319343058648675411115210453680753070042821835082619634341500680892323002118953557746116918093661769464642068, 2613797279426774540306461931319193657999892129844832159658771717387120246795689678231275371499556522396061591882431426310841974713419974045883021613987705, 9658126012133217804126630005236073513485215390812977974660029053522665282550965040288256074945246850744694519543358777252929661561636241161575937061521711, 2982535220844977621775139406357528876019349385634811795480230677982345697183586203669094998039995683973939721644887543907494963824968042199353945120367505, 107289984878191849357180490850397539311037762262082755398160292401340078782643246498566039415279868796667596686125847400130898160017838981308638814854641, 120993130590874228473811314869823704699012435303134640953201808807618070048912918046616664677916248813062043597607873728870402493717351447905456920806865, 2253040652771796284266254261719805768102740653097446325869783812201171144150768875885963729324915714812719138247784194752636928267712344736198611708630089, 8650007272154283057350664311505887535841268767424545016901418989555620869091145651216448723200240914143882774616678968725523914310965356875681207295242434, 9628747829107584650014156079928108801687158029086221730883999749044532846489666115473993005442192859171931882795973774131309900021287319059216105939670757, 10846936951522093706092027908131679912432689712451920718439096706435533926996215766191967052667966065917006691565771695772798711202812180782901250249613072, 1606865651227988736664127021678689299989045439998336603562232908863405778474520915170766771811336319655792746590981740617823564813573118410064976081989237, 6239063657591721097735049409610872941214078699330136826592958549212481802973973104374548555184907929255031570525343007518434357690480429981016781110249612, 1855365916387114620581029939707053701062476745235578683558063796604744448050278138954359506922875967537567359575662394297579958372107484276360920567730458]
res=[2150646508, 1512876052, 2420557546, 2504482055, 892924885, 213721693, 2708081441, 1242578136, 717552493, 3210536920, 2868728798, 1873446451, 645647556, 2863150833, 2481560171, 2518043272, 3183116112, 3032464437, 934713925, 470165267, 1104983992, 194502564, 1621769687, 3844589346, 21450588, 2520267465, 2516176644, 3290591307, 3605562914, 140915309, 3690380156, 3646976628]
"""

每个enc泄露32位,总共32个enc,要求的m大概在600位左右,是可以求的。

注意到enc泄露的是低位,所以这么构造
$$
T_im\equiv D*ENC_i+res_i\quad\text{(mod}p)
$$
其中$m$是密文,$D=2^{32}+1$ ,$ENC_i$是未知高位。

然后继续构造
$$
m\equiv T_0^{-1}(D*ENC_0+res_0)\quad\mathrm{(mod}p)
$$
两个式子联立消m 然后把$ENC_i$提出来
$$
(DT_0)^{-1}(T_ires_0-T_0res_i)+(T_0^{-1}T_i)ENC_0\equiv ENC_i\quad\text{(mod}p)
$$
这样子在这个式子中$ENC_0$和$ENC_i$都暴露出来了,换元然后构造矩阵直接格基约化。

令$D_{i}\equiv(DT_{0})^{-1}(T_{i}res_{0}-T_{0}res_{i})(\mathrm{mod}p),E_{i}\equiv(T_{0}^{-1}T_{i})(\mathrm{mod}p).$

展开。
$$
D_i+E_i*ENC_0-k_ip=ENC_i
$$
我草这个元设的真丑吧

但是我懒得改了

令$R=2^{m-s}$,构造矩阵
$$
B=\begin{bmatrix}-p & & & & & & & \\
& -p & & & & & & \\
& & \ddots & & & & & \\
& & & -p & & & & \\
E_1 & E_2 & E_{n-1} & & 1 & & & \\
D_1 & D_2 & D_{n-1} & & & R & & \\
\end{bmatrix}_{(n+1)*(n+1)}
$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from Crypto.Util.number import *
from sage.all import *

m = 512
s = 32
n = 32
q=11306299241774950053269547103284637414407835125777245204069367567691021928864773207548731051592853515206232365901169778048084146520829032339328263913558053
A=[3322008555255129336821309701482996933045379792432532251579564581211072677403244970423357912298444457457306659801200188166569132560659008356952740599371688, 8276764260264858811845211578415023343942634613522088631021199433066924291049858607045960690574035761370394263154981351728494309737901121703288822616367266, 9872291736922974456420418463601129094227231979218385985149661132792467621940722580745327835405374826293791332815176458750548942757024017382881517284991646, 4021521745142535813153669961146457406640791935844796005344073886289668464885011415887755787903927824762833158130615018326666118383128627535623639046817799, 24569151076141700493541155834378165089870615699969211988778938492838766214386066952596557490584021813819164202001474086538804476667616708172536787956586, 3218501156520848572861458831123822689702035242514803505049101779996231750875036344564322600086861361414609201214822262908428091097382781770850929067404210, 3563405987398375076327633444036492163004958714828685846202818610320439306396912425420391070117069875583786819323173342951172594046652017297552813501557159, 4914709045693863038598225124534515048993310770286105070725513667435983789847547225180024824321458761262390817487861675595466513538901373422149236133926354, 10800566112999947911006702454427389510409658644419749067440812458744391509925306994806187389406032718319773665587324010542068486131582672363925769248595266, 623364920052209790798128731089194813138909691039137935275037339503622126325928773037501254722851684318024014108149525215083265733712809162344553998427324, 4918421097628430613801265525870561041230011029818851291086862970508621529074497601678774921285912745589840510459677522074887576152015356984592589649844431, 7445733357215847370070696136653689748718028080364812263947785747353258936968978183471549706166364243148972154215055224857918834937707555053246184822095602, 9333534755049225627530284249388438694002602645047933865453159836796667198966058177988500184073454386184080934727537200575457598976121667373801441395932440, 5010854803179970445838791575321127911278311635230076639023411571148488903400610121248617307773872612743228998892986200202713496570375447255258630932158822, 6000645068462569819648461070140557521144801013490106632356836325002546400871463957228581143954591005398533252218429970486115490535584071786260818773166324, 8007260909124669381862034901556111245780505987082990804380814797200322228942432673939944693062470178256867366602331612363176408356304641672459456517978560, 10179739175373883376929532026389135792129233730601278687507041429438945598523995700184622359660605910932803141785598758326254886448481046307666042835829725, 8390072767717395701926289779433055672863880336031837009119103448675232362942223633129328309118158273835961567436591234922783953373319767835877266849545292, 7875011911562967874676113680693929230283866841475641162854665293111344467709424408623198370942797099964625447512797138192853009126888853283526034411007513, 5293772811020012501020124775214770193234655210319343058648675411115210453680753070042821835082619634341500680892323002118953557746116918093661769464642068, 2613797279426774540306461931319193657999892129844832159658771717387120246795689678231275371499556522396061591882431426310841974713419974045883021613987705, 9658126012133217804126630005236073513485215390812977974660029053522665282550965040288256074945246850744694519543358777252929661561636241161575937061521711, 2982535220844977621775139406357528876019349385634811795480230677982345697183586203669094998039995683973939721644887543907494963824968042199353945120367505, 107289984878191849357180490850397539311037762262082755398160292401340078782643246498566039415279868796667596686125847400130898160017838981308638814854641, 120993130590874228473811314869823704699012435303134640953201808807618070048912918046616664677916248813062043597607873728870402493717351447905456920806865, 2253040652771796284266254261719805768102740653097446325869783812201171144150768875885963729324915714812719138247784194752636928267712344736198611708630089, 8650007272154283057350664311505887535841268767424545016901418989555620869091145651216448723200240914143882774616678968725523914310965356875681207295242434, 9628747829107584650014156079928108801687158029086221730883999749044532846489666115473993005442192859171931882795973774131309900021287319059216105939670757, 10846936951522093706092027908131679912432689712451920718439096706435533926996215766191967052667966065917006691565771695772798711202812180782901250249613072, 1606865651227988736664127021678689299989045439998336603562232908863405778474520915170766771811336319655792746590981740617823564813573118410064976081989237, 6239063657591721097735049409610872941214078699330136826592958549212481802973973104374548555184907929255031570525343007518434357690480429981016781110249612, 1855365916387114620581029939707053701062476745235578683558063796604744448050278138954359506922875967537567359575662394297579958372107484276360920567730458]
b=[2150646508, 1512876052, 2420557546, 2504482055, 892924885, 213721693, 2708081441, 1242578136, 717552493, 3210536920, 2868728798, 1873446451, 645647556, 2863150833, 2481560171, 2518043272, 3183116112, 3032464437, 934713925, 470165267, 1104983992, 194502564, 1621769687, 3844589346, 21450588, 2520267465, 2516176644, 3290591307, 3605562914, 140915309, 3690380156, 3646976628]
T = 2^s+1
Ti = T.inverse_mod(q)
for choice in range(n):
A0 = A[choice]
S = 2^(m-1)
b0 = b[choice]
b = [x for x in b]
A0i = inverse(A[choice],q)
Mt = matrix(ZZ, n+1)
for i in range(n-1):
Mt[i, i] = -q
Mt[-2, i] = A0i*A[i+1] % q
Mt[-1, i] = A0i*Ti*(A[i+1]*b0 - A0*b[i+1]) % q
Mt[-2, -2] = 1
R = 2^(m-19)
Mt[-1, -1] = R
L = Mt.BKZ(block_size=Mt.rank())
for l in L:
if l[-1] == R:
B0 = l[-2]
x0 = (T*B0+b0) * A0i % q
print(long_to_bytes(int(x0)))

matrix_equation

简单的格构造,其实本该想到的,但是笔者一意孤行认为是丢番图方程…

卡了一会,当然最后还是做出来了。

简单说说。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from Crypto.Util.number import *
import hashlib
from secret import p,q,r
k1=getPrime(256)
k2=getPrime(256)
temp=p*2**256+q*k1+r*k2
hint=len(bin(temp)[2:])
flag='hgame{'+hashlib.sha256(str(p+q+r).encode()).hexdigest()+'}'
print(f'hint={hint}')
print(f'k1={k1}')
print(f'k2={k2}')
"""
83
k1=73715329877215340145951238343247156282165705396074786483256699817651255709671
k2=61361970662269869738270328523897765408443907198313632410068454223717824276837
"""

题面很简单,实际上也应该联想到要构造矩阵去做。

目标是构造矩阵M使得(p,q,r)*M=(temp,q,r),并且(temp,q,r)应为最短向量。

故可构造
$$
B=\begin{bmatrix}2^{256} & 0 & 0 \\
k_1 & 1 & 0 \\
k_2 & 0 & 1 \\
\end{bmatrix}
$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def solve_pqr(k1,k2):
M = matrix(ZZ, [[2^256,0,0],
[k1,1,0],
[k2,0,1]])
Msub = M.LLL()
print(len(bin(Msub[0,2])))
v = M.solve_left(Msub[0])
p, q,r = v[0], v[1],v[2]
return p, q,r
k1=7371532987721534014595123834324715628216570539607478648325669981765125570967
1
k2=6136197066226986973827032852389776540844390719831363241006845422371782427683
7
p,q,r=solve_pqr(k1,k2)
print(p,q,r)

2024-Hgame-week3-wp-crypto
https://py-thok.github.io/2024/02/25/2024-Hgame-week3-wp-crypto/
作者
PYthok-Ptk
发布于
2024年2月25日
许可协议